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Abstract. The objective of this paper is to solve numerically a Cauchy problem defined on a two-dimensional

domain occupied by a material satisfying the Helmholtz type equations and verifying additional Cauchy-type

boundary conditions on the accessible part of the boundary. A meshless numerical method using an approximation

of the solution based on the polynomial expansion is applied. To confirm the efficiency of the proposed method,

different examples were considered and the obtained linear system was solved using the well-known CG and CGLS

algorithms.
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1 Introduction

This paper is concerned with the Cauchy problem for the Helmholtz equation. Helmholtz-like
equations can arise naturally from physical applications related to wave propagation (Wang
et al., 2020), vibrational phenomena, and heat transfer (Beskos, 1997), in the acoustic cavity
problem Chen & Wong (1998), the radiation wave (Harari et al., 1998) and the heat conduction
in fins (Kraus et al., 2001).

The Cauchy problem, (Regińska & Regiński, 2006; Ellabib & Nachaoui, 2008; Fu et al., 2009;
Bergam et al., 2019; Chakib et al., 2019;Wang et al., 2020; Ellabib et al., 2021, 2022; Juraev &
Gasimov, 2022), is one of the examples of inverse problems, (Huang & Chen, 2000; Boulkhemair
et al., 2013; Lavrentiev, 2013; Isakov, 2017; Kozlov et al., 2018; Aboud et al., 2021; Nachaoui
et al., 2021, 2022; Ouaissa et al., 2022). For this kind of Cauchy problems, some boundary
conditions are given on a part of the boundary while no data is available on the rest of this
boundary and the objective is to reconstruct the missing data from additional measurements on
the accessible part of the boundary (Essaouini & Nachaoui., 2004; Mukanova B., 2013; Nachaoui
& Salih, 2021; Reddy et al., 2021). It is well known that the Cauchy problem is ill-posed in the
sense of Hadamard (Hadamard J., 1953; Lavrentiev, 2013; Dvalishvili et al., 2017). Therefore, an
appropriate algorithm, which allows to circumvent this ill-posedness phenomenon, is necessary
in order to solve in a stable way this kind of inverse problems.
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In addition to the fact that the Cauchy problem is ill-posed, another difficulty specific to
the Helmholtz equation is added. Indeed several works raised the difficulty of the numerical
approximation of this equation when the wave number is large (Ihlenburg & Babuska, 1995,
1997).

In the last two decades, several methods have been proposed for solving the Cauchy problem
for the Helmholtz equation (Yarmukhamedov, 2003; Regińska & Regiński, 2006; Fu et al., 2009;
Qian and al., 2010; Berntsson et al., 2014, 2017; Huang et al., 2017; Qian & Feng, 2017; Yang
et al., 2019; Wang et al., 2020, 2021).

Some of these methods propose algorithms that overcome this difficulty related to the mag-
nitude of the wave number (Berntsson et al., 2014, 2017; Qian & Feng, 2017). These iterative
methods depend on certain heuristic parameters whose choice ensuring convergence is not au-
tomatic. Also, it is not clear how large the wave number can be taken without the convergence
being impaired. Recently, (Berdawood et al., 2021, 2022), propose new efficient alternating al-
gorithms based on idea initially proposed in Jourhmane & Nachaoui (1999); Nachaoui, Aboud
& Nachaoui (2021) to solve the Cauchy problem for the Poisson equation. They prove the con-
vergence of the proposed procedures, for all values of wave number in the case of the Helmholtz
equation and they show that their method can accelerate convergence in the case of the modified
Helmholtz equation (Berdawood et al., 2020).

The main advantage of this approach is that there are no heuristic parameters and all the
parameters used are completely expressed according to the specified data. Moreover, they prove
that for any value of wavenumber one can specify an interval of relaxation parameter in which
convergence is ensured and a sub-interval where convergence is very fast. The limits of these
intervals are calculated according to the data. Unfortunately, in some cases the convergence
acceleration interval is very small which makes it difficult to choose the relaxation parameter
(Berdawood et al., 2022).

The main goal of this paper is to investigate a method depending on polynomial expansion
to approximate the solution of the Cauchy problem for Helmholtz-type equation in a bounded
domain. This method was proposed in Rasheed et al. (2021) to solve an inverse Cauchy problem
for Poisson equation. It is a direct method which avoids the problem often encountered in
iterative methods, namely the slowness of the algorithm. The major difficulty of this method
is the transfer of the ill-posed character of the Cauchy problem to the matrix of the obtained
linear system. This results in a very large number of conditions which quickly deteriorates the
efficiency of the solver. We show that this inconvenience can be avoided by a preconditioning
which is not very expensive.

In the following, we recall the inverse Cauchy problems for the Helmholtz equation.

2 Inverse Cauchy problems for the Helmholtz equation

We consider the inverse Cauchy problem for the Helmholtz equation defined by:

∆T + k2T = F (x, y), (x, y) ∈ Ω (1)

T (ρ, θ) = T̃ (θ), 0 ≤ θ ≤ βπ (2)

∂nT (ρ, θ) ≡ Φ(ρ, θ) = Φ̃(θ), 0 ≤ θ ≤ βπ, (3)

where F (x, y), T̃ (θ) and Φ̃(θ) are sufficiently regular given functions, the boundary Γ of the
domain Ω ⊂ R2 is such that Γ = Γ1 ∪ Γ2 with

Γ1 = {(r, θ) : r = ρ(θ) , 0 ≤ θ < βπ} (4)

and

Γ2 = {(r, θ) : r = ρ(θ), βπ ≤ θ < 2π, 0 < β < 2} (5)
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Note that the normal derivative of T (x, y) can be expressed in the following form (see (Liu
& Kuo, 2018; Rasheed et al., 2021)),

∂nT = η(θ)

[
cos(θ)− ρ′

ρ2
sin(θ)

]
∂xu+ η(θ)

[
sin(θ)− ρ′

ρ2
cos(θ)

]
∂yu (6)

where η(θ) is given by

η(θ) =
ρ(θ)√

ρ2(θ) + [ρ′(θ)]
2
. (7)

3 Approximation of solution by a polynomial expansion

The idea is to approximate the solution T of (1)-(3) as a polynomial in the form:

T (x, y) =
m∑
i=1

i∑
j=1

cijx
i−jyj−1 (8)

where, cij, 1 ≤ i ≤ m and 1 ≤ j ≤ i are unknown coefficients to be determined.
Replacing in (2)-(3) the solution T by its approximation given in (8) and using the expression

(6) of the normal derivative we obtain a system of equations whose evaluation on n1a points
of Γ1 gives rise to 2 ∗ n1a equations. These equations combined with those obtained from the
evaluation of equation (1), replacing T by its approximation (8), at n1b points of Ω gives rise to
a linear system of the form:

Ac = b (9)

where c is a vector to be determined of length n2 = m(m+1)/2 in which the coefficients cij have
been reordered. The known data vector b has length n1 = 2 ∗ n1a + n1b and A is a rectangular
matrix of the system of order n1 × n2.

Thus, solving the inverse Cauchy problem (1)-(3) is reduced to solving the system (9). It
should be noted that in order to uniquely determine the solution of the system of linear algebraic
equation (9), the number n1 of collocation points and the number n2 must satisfy the inequality
n1 ≥ n2.

4 Linear system and numerical method

4.1 Tikhonov’s regularization

The matrix equation resulting from the polynomial approximation (9) is often highly ill-conditioned
and the data for the Cauchy problem is usually not exact, it contains uncertainties. We therefore
have to be particularly be careful when solving them. Most standard numerical methods struggle
to achieve good precision in solving the system of linear algebraic equations (9) due to the large
value of the condition number of the matrix A which increases considerably with the number of
collocation points. The technique of regularization is a numerical method of treatment of the
ill-posed discrete problem seeking to overcome the conditioning by replacing the matrix of the
system of linear algebraic equations by a matrix having a better conditioning and whose solution
of the associated system is close of the desired solution. This technique generally allows a better
improvement of the numerical precision of the solution of the original problem but requires a
good choice of regularization parameter for optimal performance.

We consider in our study only the regularization method of Tikhonov (the reader may consult
Hansen (1998) for other regularization procedures).

Formally, the Tikhonov regularized solution of problem (9) is obtained as the solution of the
regularized system [

ATA+ αI
]
Cα = AT b (10)
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Note that if α = 0 this system is equivalent to solving the following normal equation:

Dc = b1, (11)

where b1 = AT b and D = ATA. D is a symmetric positive definite matrix, thus the conjugate
gradient (CG) method can be used to solve this last linear system. But in some cases, as we
will see in the numerical results, this least squares solution will be completely dominated by
the contributions of data errors and rounding errors. The addition of a regularization makes it
possible to damp these contributions. Unfortunately even the regularization is not enough to
circumvent the effect of the bad conditioning of these matrices, a preconditioning proves to be
necessary.

4.2 Preconditioning

A preconditioner is a matrix with an appropriate advantage which can be used to obtain a
new system having the same solution as the original one but which is better conditioned, i.e.
whose number of conditions of the matrix resulting is smaller. We use the following kind of
preconditioning: right, left and two-sided (as defined in Rasheed et al. (2021)).

The left and right preconditioning matrices P and Q are diagonal defined by:
P = diag(p1, p2 · · · pn) and Q = diag(q1, q2 · · · qn) where pk and qk are given by:

pk = γ

(∑n
i=1A

2
i1∑n

i=1A
2
ik

) 1
2

, qk = δ

(∑n
i=1A

2
1i∑n

i=1A
2
ki

) 1
2

(12)

for k = 1, · · · , n. The parameters γ and δ are amplifying factors introduced to more reduce the
condition number. If γ = δ = 1, then the norm of each row and column of the obtained matrices
QA and AP are the same respectively.

In the following we present the numerical results obtained from solving the linear system (9)
by the CG and CGLS methods. In the CGLS, the matrix D = ATA is never calculated because
this leads to unnecessary inaccuracies.

We show in our numerical experience that the CGLS is a good choice of solving the normal
equations (10). It reduces the number of iterations and improves accuracy compared to CG.

5 Numerical results and discussion

In this section, we discuss the numerical results obtained using the polynomial approximation
described in section (3) to solve the Cauchy problem for the Helmholtz equation in a two-
dimensional bounded domain. The discrete system is solved using the Tikhonov regularization
technique in conjunction with the CG and CGLS methods. The goal is to show that, in the case
of the Cauchy problem governed by the Helmholtz equation, the procedure proposed here works
well without restriction of the value of the wave number k. Contrary to some previous works,
we will show, by a numerical analysis, that this method is stable, when the given data is noisy.
In order to show the efficiency of the proposed procedure compared to other existing schemes
concerned with the same problem, we treat examples of Berdawood et al. (2021, 2022).

5.1 Polynomial Examples

5.1.1 Examples with uex = x2 − y2

In this first example, we consider the domain bounded by ρ(θ) = 1. The parameter β defining
Γ1 and Γ1, see (4)-(5) is taken to be β = 0.5 The boundary conditions in (2)-(3) are computed
from the exact solution uex = x2 − y2. The number of boundary collocation points used for
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discretizing the boundary is taken to be n1a = 11 , and for the number of internal collocation
points is n1b = 88.

We are interested in the case where β=0.5 which simulates the case where Cauchy data is
available on a small part of the boundary. We examine the behavior of the method according
to the wavenumber k.

We start by examining the impact of the tolerance variation in the stopping criterion of
CG and CGLS on the quality of the solution.

First case: Tol = 10−10.
The results for this case are given in Tables 1 - 4

Table 1: Accuracy and convergence for k =
√

15 with β = 0.5 and Tol = 10−10.

m Iter ErrorCG Iter ErrorCGLS

2 3 0.984480146 3 0.984480146

3 6 3.82617181E-13 6 3.53431456E-13

4 13 2.71076095E-12 13 1.57815691E-11

5 24 1.25102778E-11 23 1.57455066E-10

6 51 2.66719616E-09 50 4.58402391E-10

7 130 5.73363232E-09 104 3.26221713E-08

8 287 2.06856292E-08 238 1.48616206E-08

9 628 5.85053605E-03 468 5.85057346E-03

10 943 6.65922811E-03 546 7.04835449E-03

We observe from Tables 1 that the method gives rise to an accurate solution for m ≥ 3. The
best result (best precision with a very few number of iteration) is obtained for m = 3. This is
normal, since we approximate a polynomial solution of degree 2 by a polynomial whose degree
is m − 1. The best polynomial approximating a polynomial of degree q is a polynomial of the
same degree. This allows us to conclude that if we take a relatively large m, the method ensures
obtaining a very good approximation.

Table 2: Accuracy and convergence for
√

25.5 with β = 0.5 and Tol = 10−10.

m Iter ErrorCG Iter ErrorCGLS

2 3 0.984472074 3 0.984472074

3 6 3.38826241E-13 6 1.11068467E-12

4 13 1.21853710E-11 12 4.10071874E-11

5 24 1.00757311E-10 23 2.95448913E-10

6 50 9.43724405E-11 47 1.92213813E-09

7 115 1.29715217E-08 103 1.78820800E-09

8 291 1.78730096E-04 225 1.78770070E-04

9 601 1.95566917E-03 421 1.95562646E-03

10 789 3.73860718E-03 546 3.73881411E-03

The same observations drawn from Table 1 are valid for Table 2. This supports the conclu-
sions made from the results of the first table.

As in Table 1 and Table 2, the same conclusions can be drown from Table 3. We also observe
that the results are a little better than for k =

√
15 and k =

√
25.5.

The remark made from the results of Table 2, namely that the precision improves when k
becomes larger and larger, is confirmed in the results of Table 4 . Unlike the iterative KMF
method (see Berntsson et al. (2014); Berdawood et al. (2021, 2022)) we observe from the results
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Table 3: Accuracy and convergence for k =
√

52 with β = 0.5 and Tol = 10−10.

m Iter ErrorCG Iter ErrorCGLS

2 3 0.984469932 3 0.984469932

3 6 2.71649722E-13 6 6.62061823E-13

4 12 3.00218846E-11 12 3.39699330E-11

5 22 3.17149310E-11 23 1.03545308E-10

6 50 4.13983795E-11 48 1.23093291E-11

7 118 2.70939616E-09 98 4.40119636E-09

8 231 1.75990931E-05 174 1.76158598E-05

9 475 3.53811957E-04 351 3.53726268E-04

10 624 6.21309895E-04 445 6.21277858E-04

presented in these last two tables that the method proposed here works well even when the
wavenumber is large. We even observe a marked improvement in accuracy for these cases.

Table 4: Accuracy and convergence for k =
√

100 with β = 0.5 and Tol = 10−10.

m Iter ErrorCG Iter ErrorCGLS

2 3 0.984469527 3 0.984469527

3 6 4.09601773E-14 6 8.59588601E-13

4 12 4.69185779E-12 12 5.07247832E-11

5 22 3.73747172E-11 22 2.44003592E-10

6 50 7.54919212E-11 48 1.28764770E-12

7 94 8.78736779E-06 85 8.78878242E-06

8 182 7.04948035E-06 161 7.05266643E-06

9 418 3.65511550E-04 311 3.65687386E-04

10 423 1.25867992E-03 284 1.10680010E-03

From these first four results, we can conclude that, when the data comes from a polyno-
mial function, the solution method based on the polynomial expansion produces a very good
approximation even for large wavenumber. If the degree q of the polynomial forming the data
is known, it suffices to take m = q+ 1 to obtain a very accurate solution and in a small number
of iterations in the solver of the linear system. We also conclude, from the results of Table 1 - 4
that CGLS method is more accurate than CG method. It is also much faster when m becomes
large, for example for the case k =

√
100 the iteration number is practically divided by 2 when

m is large.

Second case : Tol = 10−15

In Tables 5 - 8, we take the same data with Tol = 10−15 for the stopping criteria.
For the tables 5 - 8, the same observations drawn from the first case are also valid for this

case. This supports the conclusions made from the results of the first case. We observe also that
for a tolerance Tol = 10−15, we obtain a relative error of ∼ e−16, i.e. the calculated solution
is an excellent approximation of the exact solution, when this solution is a polynomial. So, to
summarize, we note that the method CGLS is more precise than the CG and that even with
equal precision CGLS is faster.

5.1.2 Examples with uex = 6x2y2 − x4 − y4

In this second example, we study an example with a higher degree.
We consider the domain bounded by ρ(θ) = 0.5. The parameter β defining Γ1 and Γ1, see

(4)-(5) is taken to be β = 0.5 The boundary conditions in (2)-(3) are computed from the exact
solution uex = 6x2y2 − x4 − y4.

311



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.7, N.3, 2022

Table 5: Accuracy and convergence for k =
√

15 with β = 0.5 and Tol = 10−15.

m Iter ErrorCG Iter ErrorCGLS

2 3 0.984480146 3 0.984480146

3 7 9.12755322E-16 7 3.77980138E-16

4 14 3.78952645E-15 14 7.21601819E-16

5 29 1.16322812E-13 28 6.62657019E-15

6 68 6.04707192E-13 62 1.86258559E-14

7 158 2.33542657E-11 132 1.64513888E-12

8 349 4.70037373E-11 268 2.52040120E-13

9 2428 1.13099561E-08 1016 6.65894651E-10

10 14044 1.75054466E-05 3410 1.31807753E-05

Table 6: Accuracy and convergence for k =
√

25.5 with β = 0.5 and Tol = 10−15.

m Iter ErrorCG Iter ErrorCGLS

2 3 0.984472074 4 0.984472074

3 7 1.44265899E-15 7 5.09868145E-16

4 14 5.58504934E-15 14 6.90729256E-16

5 29 7.88167679E-14 28 4.95019944E-15

6 62 2.66770643E-13 54 1.39751412E-14

7 155 1.06145736E-11 134 3.70890335E-14

8 427 5.05514191E-10 316 2.85704721E-14

9 2844 9.95416042E-08 1021 4.81938368E-10

10 15191 1.20139914E-05 3508 1.86095359E-06

Table 7: Accuracy and convergence for k =
√

52 with β = 0.5 and Tol = 10−15.

m Iter ErrorCG Iter ErrorCGLS

2 3 0.984469932 3 0.984469932

3 7 9.59512661E-16 7 3.28408400E-16

4 14 3.00169388E-15 14 5.38313958E-16

5 29 6.01403759E-14 28 5.01986436E-15

6 58 1.20228077E-13 52 3.50558064E-15

7 149 8.80141791E-12 128 5.06843127E-13

8 473 8.19982392E-10 312 3.84308809E-12

9 3281 1.02000381E-06 1227 6.84986304E-10

10 5742 2.33372676E-05 1864 2.42305269E-05

In addition to the study made on the first example, we also study the impact of the number
of collocation points.

First case: n1a = 11, n1b = 88 and Tol = 10−10

In this case, the number of boundary collocation points used for discretizing the boundary is
taken to be n1a = 11 , and for the number of internal collocation points is n1b = 88. For both
algorithms CG and CGLS, we take Tol = 10−10 in the stopping criterion.

The results are given in Tables 9 - 12.

We note from Tables 9 - 12 that the accuracy is always good but deteriorates for small m.
This is explained by the fact that, since the degree is high, a higher m is needed to have a better
approximation. As the previos example, the best precision with a very few number of iteration
is obtained for m = 5, since we approximate a polynomial solution of degree 4 by a polynomial
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Table 8: Accuracy and convergence for k =
√

100 with β = 0.5 and Tol = 10−15.

m Iter ErrorCG Iter ErrorCGLS

2 3 0.984469527 4 0.984469527

3 7 2.83299759E-16 7 4.67295879E-16

4 14 9.90489913E-16 14 3.41366753E-16

5 29 3.07342662E-14 28 2.38961397E-15

6 58 3.03239428E-13 52 7.45233258E-15

7 156 1.79402653E-11 132 2.16095139E-13

8 514 4.07245841E-10 327 1.74280196E-12

9 3067 1.12306370E-07 1158 9.59299334E-10

10 7707 1.85625549E-04 2184 1.84165181E-04

Table 9: Accuracy and convergence for k =
√

15, with ρ(θ) = 0.5, β = 0.5 and Tol = 10−10.

m Iter ErrorCG Iter ErrorCGLS

2 3 0.998664828 3 0.998664828

3 7 1.00541144 7 1.00541144

4 14 1.377380975 14 1.377380975

5 32 1.90050451E-11 32 3.18677342E-12

6 69 6.10737313E-10 61 1.64776106E-10

7 152 4.20977703E-08 142 5.18793622E-11

8 466 1.46758312E-07 346 2.71289192E-08

9 1687 8.28351669E-04 942 8.24584976E-04

10 3707 8.45484978E-02 1906 8.46659492E-02

Table 10: Accuracy and convergence for k =
√

25.5, with ρ(θ) = 0.5, β = 0.5 and Tol = 10−10.

m Iter ErrorCG Iter ErrorCGLS

2 3 9.98618266E-01 3 9.98618266E-01

3 7 1.000024587 7 1.000024587

4 15 1.113095769 14 1.113095769

5 33 2.10793672E-10 32 3.68721217E-11

6 74 3.20771192E-10 65 9.52506593E-09

7 159 3.57762639E-09 145 2.97209365E-10

8 462 3.85260228E-07 393 2.38206922E-08

9 1747 1.57054331E-04 1032 1.52807113E-04

10 2003 2.34629713E-01 1519 2.22106066E-01

whose degree is m− 1. We notice the this accuracy deteriorates also when m increases which is
also normal since the number of unknowns increases with m and therefore a larger number of
collocation points is necessary to have a good approximation.

Second case: n1a = 60, n1b = 720 and Tol = 10−10.
In this second case, the number of boundary collocation points used for discretizing the boundary
is taken to be n1a = 60 and for the number of internal collocation points is n1b = 720. For both
algorithms CG and CGLS, we take tha same tolerance as the previous case, i.e. Tol = 10−10

in the stopping criterion. The results are given in Tables 13 - 16.

We then observe from Tables 13 - 16 , an improvement in the results: the error is multiplied
at least by 10−1 everywhere with always the same advantage for the CGLS method. On the
other hand, as the number of collocation points is greater than in the first case, the size of
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Table 11: Accuracy and convergence for k =
√

52, with ρ(θ) = 0.5, β = 0.5 and Tol = 10−10.

m Iter ErrorCG Iter ErrorCGLS

2 3 9.98601593E-01 3 9.98601593E-01

3 7 9.97777941E-01 7 9.97777941E-01

4 15 1.105533227 14 1.105533227

5 33 9.84224273E-12 32 1.54465433E-10

6 77 3.21395766E-09 80 1.87263828E-10

7 206 1.61872310E-08 172 2.30236344E-08

8 528 1.01149326E-06 429 2.03441111E-08

9 1739 8.36318678E-05 839 1.31616261E-02

10 2240 2.12334250E-02 1111 2.48436675E-02

Table 12: Accuracy and convergence for k =
√

100, with ρ(θ) = 0.5, β = 0.5 and Tol = 10−10.

m Iter ErrorCG Iter ErrorCGLS

2 3 9.98597910E-01 3 9.98597910E-01

3 7 9.97257349E-01 7 9.97257349E-01

4 15 1.116035107 15 1.116035107

5 33 2.07056017E-12 32 1.83247349E-11

6 72 2.67121160E-09 73 4.07846425E-10

7 214 2.59122498E-08 185 2.47142313E-08

8 530 4.06068221E-04 421 4.05984114E-04

9 1028 1.92944626E-03 996 1.35353567E-03

10 1504 2.16052265E-03 962 2.16362779E-03

Table 13: Accuracy and convergence for k =
√

15 with ρ(θ) = 0.5, β = 0.5, Tol = 10−10.

m Iter ErrorCG Iter ErrorCGLS

2 3 9.99390813E-01 3 9.99390813E-01

3 7 1.008242633 7 1.008242633

4 14 1.139608415 14 1.139608415

5 30 1.30314130E-10 30 1.64450714E-10

6 66 2.90750746E-10 62 1.60490278E-11

7 151 2.21294277E-09 134 1.23092324E-08

8 406 5.06551793E-08 328 1.89056150E-09

9 1260 9.76501466E-07 863 2.88519798E-07

10 4860 2.16859811E-05 2028 1.07061659E-02

the matrices is greater and consequently the number of iterations to reach the same tolerance
becomes greater. The results confirm the superiority of CGLS which makes it possible to reduce
this number of iterations. Other results, which we do not present here to avoid cluttering the
presentation, confirm that the precision is improved for smaller tolerances. All these results
allow us to conclude that the method approaches very well the solution of the Cauchy problem
when the data are polynomial.

5.2 Non-polynomial example

The objective of this section is to test the effectiveness of the proposed method by considering
data from non-polynomial functions. Our numerical results will relate to any number of waves.
For this, we consider a small and a large wavenumber (k =

√
25.5,

√
100).

The domain considered here is bounded by ρ(θ) = 0.5, the parameter β is taken to be β = 0.5,
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Table 14: Accuracy and convergence for k =
√

25.5 with ρ(θ) = 0.5, β = 0.5, Tol = 10−10.

m Iter ErrorCG Iter ErrorCGLS

2 3 9.99351705E-01 3 9.99351705E-01

3 7 1.005554753 7 1.005554753

4 14 1.045136363 14 1.045136363

5 33 5.69473309E-11 32 4.18675265E-11

6 75 5.29480812E-11 64 3.80474385E-09

7 152 6.71573269E-09 141 6.12872602E-10

8 409 5.67460677E-08 323 1.17254779E-07

9 1182 5.13838465E-07 829 6.02598039E-06

10 3661 1.75109016E-02 2392 6.89820353E-05

Table 15: Accuracy and convergence for k =
√

52 with ρ(θ) = 0.5, β = 0.5, Tol = 10−10.

m Iter ErrorCG Iter ErrorCGLS

2 3 9.99336238E-01 3 9.99336238E-01

3 7 1.004535641 7 1.004535641

4 14 1.034679488 14 1.034679488

5 32 1.98986173E-11 32 1.41533893E-11

6 72 8.57320669E-10 70 9.14568007E-11

7 189 6.46039525E-09 167 1.01847030E-10

8 425 6.41411638E-08 369 2.21420609E-08

9 1223 4.27663885E-07 938 5.62839274E-09

10 2590 2.30318493E-03 1867 2.31617009E-03

Table 16: Accuracy and convergence for k =
√

100 with ρ(θ) = 0.5, β = 0.5, Tol = 10−10.

m Iter ErrorCG Iter ErrorCGLS

2 3 9.99332685E-01 3 9.99332685E-01

3 7 1.004339928 7 1.004339928

4 14 1.036734123 14 1.036734123

5 31 1.10066460E-11 32 1.94768283E-12

6 70 2.32532558E-10 71 2.98955207E-11

7 175 6.99153646E-10 171 1.01161997E-10

8 481 1.77864896E-08 405 2.03411506E-07

9 1549 5.21810160E-07 1136 1.23789483E-06

10 1722 5.26458128E-04 1078 6.03715215E-04

the boundary conditions in (2)-(3) are computed from the exact solution uex = exp (x) cos(y).
The number of boundary collocation points used for discretizing the boundary is taken to be
n1a = 25 , and for the number of internal collocation points is n1b = 500.

For the stoping criterion, the tolerance is taken Tol = 10−15. The results are presented in
tables 17, 18.

In the tables 17, 18, we observe that the quality of the solution remains very good. The
best precision is obtained for m = 9 for the two algorithms CG and CGLS with approximately
the same precision. But for the other values of m the results remain acceptable. This means
that even if we don’t know the value of m ensuring the best result, we just have to take a
large enough m for a good approximation. Of course here the number of iterations necessary
to reach convergence is much more important than for the preceding cases. The performance of
the CGLS method is always better than that of the CG method.
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Table 17: Accuracy and and convergence for k =
√

25.5.

m Iter ErrorCG Iter ErrorCGLS

7 165 1.11833391E-05 133 1.11833447E-05

8 377 2.56736172E-06 310 2.56734932E-06

9 1097 3.53983721E-07 797 3.52777601E-07

10 2963 6.06578639E-07 1701 5.85498895E-07

11 4240 4.48482263E-05 1937 7.08122664E-05

12 6214 6.46496231E-05 3311 6.92928386E-05

13 5624 7.38145570E-05 3233 7.35561628E-05

14 6491 6.96830002E-05 3829 6.94486181E-05

Table 18: Accuracy and and convergence for k =
√

100.

m Iter ErrorCG Iter ErrorCGLS

7 164 1.57319263E-06 163 1.57319247E-06

8 404 1.38286945E-07 375 1.38294007E-07

9 1068 1.60219640E-08 948 1.56409840E-08

10 1949 1.80955468E-07 1575 1.80425897E-07

11 1992 3.97797632E-07 1999 2.31756081E-07

12 2327 1.92686074E-07 1920 1.93815458E-07

13 2598 2.48302724E-07 2032 2.49309361E-07

14 2401 2.57874127E-07 1995 2.58632234E-07

5.3 Perturbation by a noise

In general, the data used for solving inverse problems are collected from certain measurements
and therefore necessarily contain measurement errors. To simulate this situation, we must study
the effect of introducing noise into the data on the quality of the obtained approximate solution.
This type of test is important because the problems we solve are ill-posed. To do this, we use
the following formula to perturb the given Cauchy data:

h(θ) = uex(ρ(θ), θ) + σ ∗ ω

where ω is the standard deviation of measurement errors which is assumed to be the same for
all measurements, and ω is the Gaussian distributed random error. σ represent the noise level,
we use the values 0.001, 0.01, 0.05 and 0.1.

The effect of measurement errors on the quality of inverse solutions is discussed using the
first example with polynomial data, for β = 0.5, k =

√
52.

In figures 1-4, we have represented the approximate solution on the boundary Γ2, recovered
using the CG and CGLS algorithms in comparison with the exact solution. It can be seen
in these figures that, when σ decreases, the obtained numerical approximation is closer to the
exact solution. The numerical results obtained by the two algorithms are “equivalent”. They
are still a reasonably good approximation to the exact solution of the problem, even when the
boundary data are perturbed by 10% relative random noise (σ = 0.1), since we solved an ill-
conditioned problem. However, when solving a very ill-posed problem as we will see in the
following sections the recovery of the approximate solution on the underspecified boundary Γ2

then becomes not so good. The results remain unsatisfactory even when the two methods are
used with regularization.
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Figure 1: Exact and computed solutions
with the anoise level σ = 0.1

Figure 2: Exact and computed solutions
with the anoise level σ = 0.05

Figure 3: Exact and computed solutions
with the anoise level σ = 0.05

Figure 4: Exact and computed solutions
with the anoise level σ = 0.001

5.4 Regularization and precondition

5.4.1 Effect of regularization and preconditioning

In the following, we examine the effect of regularization and preconditioning on the problem
in the last non-polynomial example. We limit ourselves to the case where the resolution of the
linear system is done with the CGLS algorithm. Applying regularization without preconditioning
for different values of the parameter α does not improve either the precision or the number of
iterations. In fact the regularization does not bring any improvement in accuracy and we only
gain 0.5% ( resp. 0.5%) of time for the case k =

√
25.5 (resp. k =

√
100). On the other hand,

the application of preconditioning makes it possible to divide the number of iterations up to by
three, see tables 19 - 20 .

The examples treated here are cases where the approximate solution is obtained with very
good precision the application of a preconditioning acts as a convergence accelerator by reducing
the number of iterations necessary for the CGLS algorithm to converge. In the following, we
present results for cases with very ill-conditioned systems. In this cases, without preconditioning
the method does not allow to obtain an acceptable solution.

Consider that the domain bounded by ρ(θ) = 0.5. The parameter β defining Γ1 and Γ1, is
taken to be β = 0.5 The boundary conditions in (2)-(3) are computed from the exact solution
uex = sin(p ∗ x) ∗ sinh(p ∗ y) ∗ (1/(p2)), for deferent values of p. The number of boundary
collocation points used for discretizing the boundary is taken to be n1a = 32 , and for the
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Table 19: Results for CGLS, k =
√

25.5, ρ(θ) = 0.5, β = 0.5, n1a = 25, n1b = 500 and Tol = 10−15.

Precondition γ α Error by CGLS Iter

without regularization 3.52777601E-07 797
& without precondition

regularization 10−12 3.52987330E-07 793
& without precondition

right 0.1 10−12 3.52711831E-07 395
regularization & preconditioning left 0.3 10−12 2.04426056E-07 681

two-sided 0.4 10−17 2.67329650E-07 334

Table 20: Results for CGLS, k =
√

100, ρ(θ) = 0.5, β = 0.5, n1a = 25, n1b = 500 and Tol = 10−15.

Precondition γ α Error by CGLS iter
without regularization 1.56409840E-08 948
& without precondition
regularization 10−12 1.56414832E-08 937
& without precondition

right 0.2 10−14 1.56293158E-08 349
regularization & preconditioning left 0.3 10−12 2.04426056E-07 681

two-sided 0.5 10−17 3.06276812E-08 332

number of internal collocation points is n1b = 512.

We start by examining the case where p = 5, and we take as tolerance Tol = 10−12.

Table 21: Results for CGLS, p = 5 k =
√

15, β = 0.5, n1a = 32, n1b = 512 and Tol = 10−12.

Precondition γ α Error iteration
Without regularization, 0.151 25426
without preconditioning
Regularization 10−20 0.146 21182
without preconditioning
Regularization & preconditioning Left 0.8 10−13 0.091 5279

For this example the best approximation is obtained for m = 13, the regularization without
preconditioning brings a slight improvement about 16% reduction in the number of iterations
but still no acceptable solution. In fact this problem is severely ill-conditioned with condition
number κ(A) = 1.74e + 012. Fortunately, regularization with preconditioning has a positive
effect on accuracy and execution time. for example, left-side preconditioning improves accuracy
with a relative error 7.23E − 02 and significantly reduces the number of iterations (number of
iterations divided by 5).

Next, we consider the case p = 8 which is a case with more oscillation in the data. We take
a smaller tolerance Tol = 10−15 and we increase the number of collocation points n1b = 2048.

We notice that despite the fact that we increased the number of collocation points and
reduced the tolerance the method could not produce an acceptable solution even with regular-
ization. This is due to the fact that the linear system is very badly conditioned. On the other
hand, the use of proconditioners improves the results in terms of precision and execution time.
For example, the the right-side preconditioning allows to build an approximation with a relative
error of 0.079 in only 4091 iterations. That is to say an improvement in precision of 68% and a
division of the number of iterations by 16.
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Table 22: Results for CGLS, p = 8 k =
√

15, β = 0.5, n1a = 32, n1b = 2048 and Tol = 10−15

Precondition γ α Error by CGLS iter
Without regularization 0.247 65934
& without preconditioning
Regularization 10−11 0.182 59745
& without preconditioning
Regularization & preconditioning Right 0.3 10−6 0.079 4091

6 Conclusion

We have solved the inverse Cauchy problem governed by a Helmholtz equation to recover un-
known data on one part of the boundary from the overspecified Cauchy boundary conditions
given on another inaccessible part. We transformed the inverse Cauchy problem to solve a direct
problem, using polynomial expansion. A preconditioning strategy combined with a regulariza-
tion was used in order to remedy the ill-conditioned character of the linear systems appearing
in the determination of the expansion coefficients. Several numerical examples are presented to
show that the method can overcome the very ill-posed property of the the aproximated inverse
Cauchy problem. These numerical results also show that this meshless method makes it possi-
ble to obtain an acceptable solution even in the case of a large wavenumber, which is not the
case for certain iterative methods used in the literature. However, it remains difficult to find
an acceptable solution in certain cases where the data induce extremely ill-conditioned linear
systems.
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